ООО «ЗАВОД ВКО» огрн 1133316000861

Россия, 601010, Владимирская обл., Киржачский р-н, г. Киржач, мкр. Красный Октябрь, ул. Первомайская, дом 1 Тел.: +7 902 881 0000, e-mail: zavod_vko@rambler.ru

УПРАВЛЯЮЩИЙ МОДУЛЬ СИСТЕМЫ ВЕНТИЛЯЦИИ

Уважаемый покупатель!

Вы приобрели управляющий модуль, который является сложным техническим устройством. Перед началом работы с этим устройством необходимо внимательно ознакомиться с данным документом.

Неправильное подключение управляющего модуля может привести к аварийным ситуациям.

1. Назначение

- 1.1. Модуль предназначен для управления работой приточной системы вентиляции (ПСВ) и выполняет следующие функции:
- поддержание заданной температуры воздуха в приточном воздуховоде;
- управление электродвигателем приточного вентилятора приточной установки (ПУ);
- управление приводом трехходового клапана на теплоносителе;
- управление приводом воздушной заслонки ПУ с возвратной пружиной;
- защиты от замерзания калорифера по температуре обратной воды и по воздуху;
- блокировки работы ПСВ при возникновении аварийных ситуаций;
- сигнализации аварийного и рабочего режима;
- контроль загрязнения фильтра ПУ.

2. Технические характеристики.

- 2.1. Управляющий модуль соответствует требованиям технических условий ТУ 3430-051-21059055-2014
- 2.2. Основные технические характеристики модуля приведены в табл. 1 Таблица 1.

Габаритные размеры управляющего модуля	(300х565х153) мм
Macca	5 кг
Напряжение питания	3~380B; ±5 %
Потребляемая мощность	30 Bt
Температура окружающей среды	0°C—50°C
Относительная влажность воздуха	90 % max
Степень защиты	IP65
Нагреватель	Водяной калорифер
Параметры приточного вентилятора ПУ	1~220В, до 1,5кВт
Параметры привода воздушной заслонки ПУ	1~220B
Количество регуляторов температуры	1
Количество подключаемых датчиков температуры	4 max
Регулируемый диапазон температуры	5°C—30°C
Количество регулирующих выходов	1—3
Тип регулирующего вентиля	Аналоговый (0-10 В)

3. Комплектность.

3.1. Комплектность приведена в табл. 2.

Таблица 2.

Наименование	Количество	Примечание
Управляющий модуль	1 шт.	
Ключ, Паспорт	1 шт.	

- 3.2. Дополнительное оборудование (поставляется по отдельному заказу):
- Датчик температуры канальный NTC10K;
- Датчик температуры накладной NTC10K;
- дифференциальный датчик давления PS-500 (контроль загрязнения фильтра ПУ).

4. Устройство и принцип работы.

- 4.1. В состав управляющего модуля входят следующие основные элементы:
- 1. Регулятор температуры Danfoss UNIVERSE 6;
- 2. QS1 Вводной выключатель питания;
- 3. QF1 Защитный автомат электродвигателя приточного вентилятора ПУ;
- 4. FU1 Защитный предохранитель цепей автоматики;
- 5. К1-К2 Контактор и промежуточные реле;
- 6. HL1-3 Лампы световой индикации;
- 7. SB1 Кнопка для включения установки ПУ;
- 8. Блок клеммных соединителей.
- 9. Понижающий трансформатор с выходным напряжением ~24В;

В состав модуля входит цепь отключения ПСВ при срабатывании пожарной сигнализации.

- 4.2. Управляющий модуль является главной составной частью системы управления ПСВ, в которую входят дополнительные устройства:
 - Регулирующий вентиль с приводом;
 - Привод воздушной заслонки с пружинным самовозвратом;
 - Термостат защиты по низкой температуре воздуха DBTF-6;

4.3. Работа регулятора температуры.

Температура измеряется посредством внешнего главного датчика в вентиляционном канале. В зависимости от того, находится ли измеряемая температура выше или ниже заданного значения, значение сигнала 0...10 В, посылаемого к системе управления обогревом (на электропривод трехходового вентиля смесительного узла), уменьшается или увеличивается до тех пор, пока система не сбалансируется, и не будет поддерживаться требуемая температура.

Температура воды в обратном трубопроводе водяного калорифера измеряется внешним датчиком замерзания РТ-1000. Если температура приближается к аварийной уставке замерзания, выходной сигнал 0...10 В увеличивает подачу тепла.

Если приточный вентилятор отключен, регулятор переходит в режим поддержания температуры обратной воды по датчику защиты от замерзания, тем самым поддерживается температура 25° в водяном калорифере посредством. При обеспечении постоянной циркуляции воды в калорифере вне зависимости от режима работы или останова вентилятора, риск повреждения от замерзания в режиме ожидания или во время пуска сводится к минимуму.

Если температура опускается ниже аварийного предела, выключается вентилятор и закрывается воздушный клапан. Это сводит риск повреждений от замерзания к минимуму. Аварийное состояние сохраняется до тех пор, пока не нажата кнопка «ESC». Сброс аварии также можно произвести, выключив и снова включив питание.

В случае если главный датчик или датчик замерзания были отключены, или произошло короткое замыкание, регулятор Danfoss UNIVERSE 6 активирует сигнал тревоги.

- 4.4. При срабатывании пожарной сигнализации разрывается цепь питания контактора К1. При этом отключается приточный вентилятор, воздушный клапан закрывается. Для повторного запуска системы необходимо в ручном режиме прогреть калорифер.
- 4.5. При возникновении неисправности в цепях управления приточного вентилятора, как и при опасности замерзания калорифера, отключаются приточный вентилятор, воздушный клапан закрывается. При этом загорается сигнал «Авария».

5.Указание мер безопасности.

5.1. При проведении монтажа и при эксплуатации необходимо соблюдать «Правила технической эксплуатации электроустановок потребителей» и «Правила техники безопасности электроустановок потребителей» и требования, установленные ГОСТ 12.0.004-79, ГОСТ 12.1.030-81, ГОСТ 12.2.007-75.

Видом опасности при работе со шкафом управления является поражающее действие электрического тока. Источником опасности являются токоведущие части, находящиеся под напряжением.

Перед проведением пусконаладочных работ необходимо установить заземление, подсоединив заземляющий провод к зажиму защитного заземления модуля, отмеченному знаком PE.

- 5.2. Любые подключения к электрическому шкафу следует производить при отключенном сетевом питании.
- 5.3. Не допускается попадание влаги в электрический шкаф.
- 5.4. НЕ ДОПУСКАЕТСЯ ОБЕСТОЧИВАНИЕ ШКАФА АВТОМАТИКИ В ПРОЦЕССЕ РАБОТЫ ПСВ, А ТАКЖЕ В ДЕЖУРНОМ РЕЖИМЕ. При аварийном отключении питания необходимо слить воду из калорифера см. пункт №8.

6. Подготовка управляющего модуля к работе.

- 6.1. Выполнить соединения в соответствии с прилагаемой схемой внешних электрических соединений (Приложение 1).
- 6.2. Проверить правильность подключения внешних цепей контроля и управления системы.
- 6.3. Провести пуско-наладочные работы в соответствии с методикой, изложенной в Приложении 2.
- 6.4. Обращаем Ваше внимание на то, что только наличие циркуляционного насоса и термозащиты по обратной воде и воздуху обеспечивает защиту калорифера от замерзания.
- 6.5. Регулятор, поставляется в составе модуля, полностью запрограммирован и подготовлен к работе. Возможные способы программирования регулятора при использовании двух температурных датчиков показаны в Приложении 3.

Перепрограммирование регулятора неподготовленным персоналом не допускается

7. Порядок работы.

- 7.1. Перед пуском системы проверить:
- Соответствие вентиляционного оборудования требуемым техническим параметрам.
- Состояние защитных автоматов. В исходном состоянии все автоматы питания шкафа управления должен быть отключены.
- Надежность крепления силовых проводов и блоков контакторов (возможное ослабление крепления при транспортировке может привести к нарушению работы).
- 7.2. Для пуска системы необходимо:
- Установить вводной выключатель питания QS1 в положение «Вкл»;
- Установить защитный автомат питания вентилятора ПУ QF1 в положение «Вкл»;
- Нажать на кнопку «Пуск». Вентилятор включится по истечении 40-ка секунд. Данная задержка предназначена для прогрева водяного калорифера.

При температуре ниже 5 градусов необходимо переключить щит в режим «зима». При несоблюдении данного пункта, возможны аварийные ситуации (обмерзание калорифера), за которые изготовитель не несёт ответственности.

При возникновении аварийных ситуаций система автоматически отключает ПСВ и при этом загорается контрольная лампа «Авария». После устранения неисправности сброс аварийного режима осуществляется кнопкой «Х», расположенной на лицевой панели контроллера, путем ее удержания в нажатом состоянии до сброса аварии (около 3 секунд).

Далее система управления включается в работу в соответствии с алгоритмом, заложенным в контроллер.

8. Возможные неисправности и способы их устранения.

8.1. При возникновении аварийных ситуаций ПСВ автоматически отключается и при этом загорается контрольная лампа «Авария». Управляющий модуль необходимо отключить и после устранения причин, приведших к возникновению аварийной ситуации снова пустить в работу. Сразу после отключения управляющего модуля необходимо вручную установить трехходовой вентиль в положение соответствующее максимальному расходу теплоносителя через калорифер (риска на оси клапана должна быть направлена в сторону перепускного канала) для этого необходимо нажать и удерживать кнопку на приводе клапана, поворачивая ось клапана. Невыполнение этого условия ведет к опасности замерзания калорифера. А при аварии циркуляционного насоса или низкой температуре теплоносителя необходимо слить воду из калорифера. Для этого необходимо перекрыть подачу воды от котла, обратный трубопровод и открыть дренажный вентиль.

8.2. Перечень возможных неисправностей приведен в таблице 3.

Таблица 3.

Неисправность	Вероятная причина	Способ устранения
Горит лампа	Отключение приточного	Проверить состояние защитного автомата.
«Авария».	вентилятора.	Проверить приточную часть ПСВ на
	Сработала защита	отсутствие неисправностей оборудования.
	от замерзания.	Проверить давление и температуру
		теплоносителя на входе и выходе калорифера.
		Проверить систему подвода теплоносителя на
		отсутствие воздушных пробок.
		Проверить внутреннюю поверхность
		калорифера на наличие участков с
		пониженной температурой.
		Обратиться в сервисную службу.
		Для перезапуска системы необходимо нажать
		кнопку «ESC» на передней панели регулятора
		Danfoss UNIVERSE 6
2. Система	Отсутствие питающего	Проверить наличие питающего напряжения
не включается	напряжения.	380В. Проверить наличие напряжения 24В на
в работу		выходе трансформатора.
3. Система	Светодиоды на передней	Проверить настройки регулятора. Они
не регулирует	панели регулятора не светятся	должны соответствовать выбранной
температуру.	при изменении положения	конфигурации системы.
	задатчика.	Проверить наличие 24В на соответствующих
		клеммах регулятора.
		Проверить правильность подключения и
		целостность канального датчика температуры
		и датчика обратной воды.

9. Эксплуатация и хранение

- 9.1. Подключение, согласно схеме, производится только при обесточенном щите.
- 9.2. При монтаже, эксплуатации и техническом обслуживании, должны выполнятся требования, установленные для электрических установок по ПУЭ.
- 9.3. Работа с незаземленным шкафом запрещается.
- 9.4. Технический персонал, участвующий в работах, должен пройти инструктаж по технике безопасности на рабочем месте под роспись в журнале.
- 9.5. Лица, производящие переключение органов управления, и подключение кабелей, должны иметь квалификацию не ниже третьей группы действующих «Правил технической эксплуатации электроустановок потребителей» и «Правил техники безопасности при эксплуатации электроустановок потребителей».
- 9.6. При монтажных и пуско-наладочных работах за выполнением требований по технике безопасности несет ответственность организация-производитель работ.
- 9.7. При эксплуатации ответственность за выполнение требований по технике безопасности несет эксплуатирующая организация.
- 9.8. Визуальный осмотр состояния элементов и контроль функционирования системы должен производиться каждые 6 месяцев с момента ввода в эксплуатацию.

10. Гарантийные обязательства

- 10.1 Средний срок службы изделия 8 лет.
- 10.2 Изготовитель гарантирует соответствие изделия требованиям проектной и эксплуатационной документации при соблюдении потребителем условий транспортирования, хранения, монтажа и эксплуатации.
- 10.3 Гарантийный срок эксплуатации 36 месяцев с момента изготовления.
- 10.4 В случае выхода модуля из строя изготовитель обязуется осуществить его бесплатный ремонт или замену при условии соблюдения потребителем правил эксплуатации и монтажа.
- 10.5 Оборудование подлежит диагностике и ремонту в сервисном центре производителя.
- 10.6 Демонтаж, монтаж и доставка оборудования до сервисного центра производителя осуществляется силами или за счет клиента.
- 10.7 В случае если неисправность управляющего модуля вызвана: отклонениями от нормы параметров питающей сети, нарушениями условий эксплуатации, не соблюдением периодичности технического обслуживания, неквалифицированным монтажом или ремонтом ремонт управляющего модуля производится за счет потребителя.

11. Периодичность технического обслуживания

- 11.1. Техническое обслуживание системы управления (модуля и периферийных устройств) должно осуществляться только квалифицированными специалистами по сервису).
- 11.2. Перед любыми работами по техническому обслуживанию и проверке, связанными с коммутацией проводников, необходимо отключить вводной выключатель QS1.
- 11.3. Визуальный осмотр состояния элементов и контроль затяжки клемм должен производиться каждые шесть месяцев с момента ввода в эксплуатацию.
- 11.4. Проверка срабатывания систем аварийной защиты должна производиться каждые три месяца с момента ввода в эксплуатацию.
- 11.5. Замена силовых контакторов производится один раз в двенадцать месяцев, о чем в паспорте делаются пометки.
- 11.6. Очистка внутренних частей модуля управления от загрязнений производится не реже раза в год.
- 11.7. Проверка соединений и работоспособности внешних устройств (частотных преобразователей, приводов заслонок, дифференциальных реле, термостатов и датчиков температуры) производится с периодичностью, указанной в документации к ним, но не реже раза в год.

Тел: +7 902 881 0000 +7 902 884 0000

Изготовитель оставляет за собой право вносить изменения в конструкцию и схему оборудования.

Отметки о наладке, сервисных работах и техническом обслуживании

Дата	Содержание работ	Подпись специалиста

ТАМОЖЕННЫЙ СОЮЗ

CEPTNONKAT COOTBETCTBNA

№ TC RU C-RU.AB24.B.01517

Серия RU

№ 0195129

ОРГАН ПО СЕРТИФИКАЦИИ
ПРОДУКЦИИ "СТАНДАРТ-ТЕСТ". Юридический адрес: 121471, город Москва, Можайское шоссе, дом 29.
Фактический адрес: 121359, город Москва, улица Маршала Тимошенко, дом 4, офис 1. Телефон (495) 741-59-32, (499) 726-30-02, факс (499) 726-30-01, адрес электронной почты info@standart-test.ru. Аттестат аккредитации № РОСС RU.0001.11АВ24 выдан 25.04.2013 ФЕДЕРАЛЬНОЙ СЛУЖБОЙ ПО АККРЕДИТАЦИИ "РОСАККРЕДИТАЦИЯ".

ЗАЯВИТЕЛЬ Общество с ограниченной ответственностью "ЗАВОД ВКО". ОГРН: 1133316000861. Место нахождения и фактический адрес: 601010, Владимирская область, Киржачский район, город Киржач, микрорайон Красный Октябрь, улица Первомайская, дом 1, Российская Федерация. Телефон +74957955585, факс +74957955585, адрес электронной почты zavod vko@rambler.ru.

ИЗГОТОВИТЕЛЬ Общество с ограниченной ответственностью "ЗАВОД ВКО". Место нахождения: 601010, Владимирская область, Киржачский район, город Киржач, микрорайон Красный Октябрь, улица Первомайская, дом 1, Российская Федерация. Фактический адрес: 601010, Владимирская область, Киржачский район, город Киржач, микрорайон Красный Октябрь, улица Первомайская, дом 1, Российская Федерация.

ПРОДУКЦИЯ Устройства комплектные низковольтные: шкафы автоматики типа: АБК-Міпі-3,6, АБК-Міпі-6,4, АБК-Міпі-17, АБК-ЭКО-В-ПН, АБК-ЭКО-Э, АБК-ЭКО-В-ПЧ, АБК-В-ПН, АБК-В-ПР, АБК-В-ПП, АБК-Э-ПН, АБК-Э-ПР, АБК-Э-ПП, АБК-В-ПП, АБК-Э-ПН, АБК-Э-ПП, АБК-Э-ПП, АБК-Э-ПП, АБК-Э-ПП, АБК-Э-ПП, АБК-Э-ПП, АБК-Э-ПП, АБК-Э-ПП, АБК-В-ПП, АБ

Продукция изготовлена в соответствии с ТУ 3430-051-21059055-2014 "Шкафы автоматики". Серийный выпуск.

код тнвэд тс 8537

СООТВЕТСТВУЕТ ТРЕБОВАНИЯМ ТР ТС 004/2011 "О безопасности низковольтного оборудования"

СЕРТИФИКАТ ВЫДАН НА ОСНОВАНИИ Протоколов испытаний №№ 61TC-09/2014, 61TC/1-09/2014, 61TC/2-09/2014 от 30.09.2014 ИЦ ООО "ЕВРОСТАН", аттестат аккредитации № РОСС RU.0001.21AB76 от 07.02.2013 до 28.10.2016.

Акта о результатах анализа состояния производства № 1673 от 29.09.2014 органа по сертификации ООО «Сертификация продукции «Стандарт-Тест», регистрационный № РОСС RU.0001.11AB24 до 20.05.2016, 121471, город Москва, Можайское шоссе, дом 29

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Условия хранения продукции в соответствии с ГОСТ 15150-69. Срок хранения (службы, годности) указан в прилагаемой к продукции товаросопроводительной и/или эксплуатационной документации. Маркировка единым знаком обращения на рынке. Изображение и размеры в соответствии с Положением о едином знако обращения продукции на рынке государств - членов Таможенного союза, утвержденным Решением Комиссине Таможеного союза от 15 июля 2011 года №711.

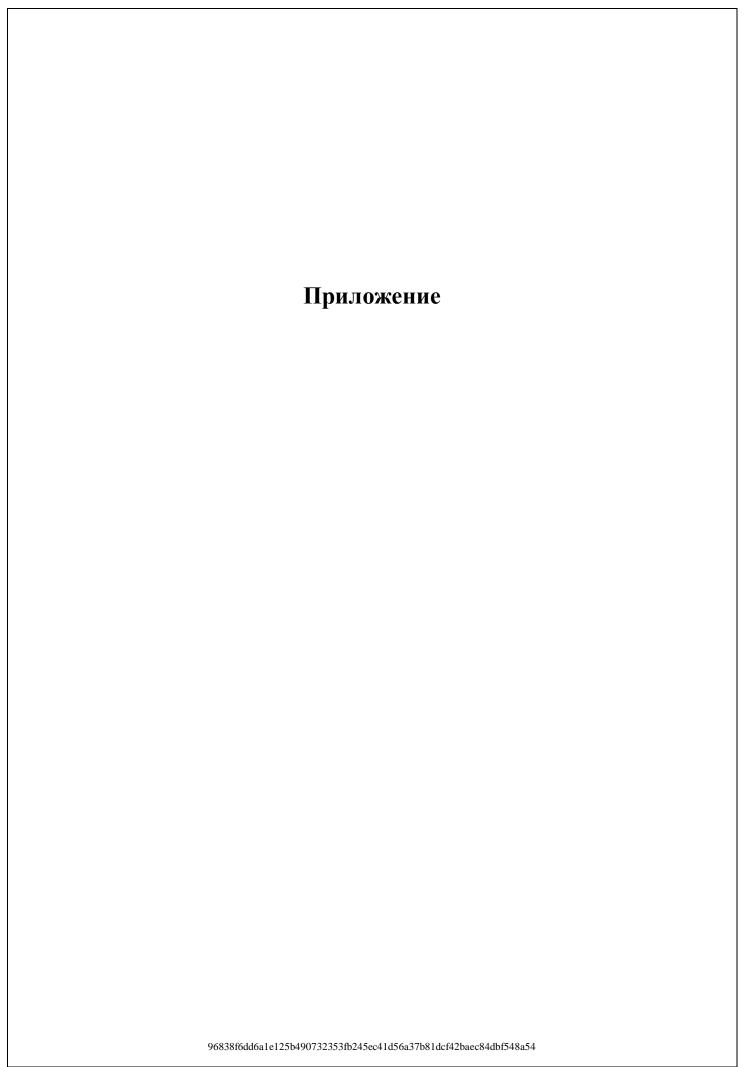
CPOK AFACTBIOS

Coprinchinatos

30.09.2014

по 29.09.2019

включительно


уководитель (уполномоченное мцо) органа по сертификации

Эксперт (эксперт-аудитор) (эксперты (эксперты-аудиторы)) (подпись)

Л.В. Козийчук (инициалы, фамилия)

В.Г. Блохин

Бланк изготовлен ЗАО "ОПЦИОН", www.opcion.ru (лицензия № 05-05-09/003 ФНС РФ) , тел. (495) 726 4742, Москва, 2013

Методика наладки вентиляционной системы с водяным калорифером.

Внимание! Перед проведением пуско-наладочных работ вентиляционной системы необходимо проверить правильность электрического монтажа. Невыполнение этого пункта в процессе проведения работ может привести к выходу из строя дорогостоящих элементов системы. Подключение исполнительных механизмов к управляющему модулю выполняется только после проверки наличия на его клеммах необходимых уровней напряжений.

1. Монтаж привода воздушной заслонки.

- 1.1. Перед монтажом проверить соответствие рабочего напряжения привода (24 В или 220 В указано на корпусе привода) напряжению, приведенному в документации на модуль управления. Несоответствие этих напряжений может привести к выходу из строя привода.
- 1.2. Подключение привода заслонки к управляющему модулю выполняется в соответствии со схемами на модуль и инструкцией, прилагаемой к приводу.

Внимание! Для приводов воздушных заслонок с питанием ~220В необходимо строго соблюдать правильность подключения жил кабеля (ноль и фаза) в соответствии с документацией на привод. Неправильное подключение приводит к выходу из строя привода.

- 1.3. Подключение привода заслонки к модулю производится кабелем с гибкими жилами.
- 1.4. Рекомендуемый тип кабеля ШВВП 2х0,75
- 1.5. Перед монтажом привода проверить его направление вращения:
 - 1.5.1. Вручную закрыть заслонку и отметить направление ее открытия;
 - 1.5.2. Подать напряжение на привод, не устанавливая его на вал заслонки, для чего в модуле включить только общий автомат питания и автомат защиты цепей автоматики. Все остальные автоматы должны быть при этом отключены. С помощью отвертки перевести пусковой контактор приточного вентилятора во включенное положение. Проверить работу привода и направление его вращения.
- 1.6. При несовпадении направлений вращения заслонки и привода, направление вращения привода должно быть изменено в соответствии с паспортом на привод (способ реверсирования зависит от типа привода).
- 1.7. В процессе наладки необходимо убедиться в плотности закрытия заслонки при останове ПСВ. При этом количество циклов изменения положения заслонки «открытазакрыта» при пуске и останове ПСВ должно быть не менее трех. При обнаружении неполного закрытия заслонки необходимо ослабить крепление винтового фиксатора и закрепить его в положении вала, соответствующем полностью закрытой заслонке.

2. Настройка уставок термозащитных автоматов.

2.1. Выставить уставки по току на термозащитных автоматах электродвигателей вентилятора и насоса, определенные по формуле $I_{\text{уст.}}=1,2*I_{\text{номин.}}$, где $I_{\text{номин.}}$ номинальный ток, указанный в паспорте электродвигателя.

3. Проверка состояния элементов вентилятора.

- 3.1. При использовании асинхронного двигателя проверить способ подключения обмоток двигателя фактическому напряжению питания:

Если указаны два напряжения питания, то меньшему напряжению соответствует способ включения \triangle , соответственно большему

- 3.2. Предварительно сняв проводники с клемм двигателя проверить отсутствие короткого замыкания между обмотками и корпусом двигателя.
- 3.3. Проверить отсутствие механических повреждений элементов вентилятора и от руки проверить легкость вращения вала двигателя.
- 3.4. При налиции ременного привода вентилятора проверить натяжение ремня, для чего приложить усилие около 10 Кг к средней части ремня, его прогиб должен быть не более толщины ремня.
- 3.5. Проверить наличие заземления.
- 3.6. Произвести пробный пуск электродвигателя и проверить:
- соответствие потребляемого тока номинальному значению при полностью открытой заслонке, указанному на корпусе двигателя или в паспорте для соответствующей схемы подключения. Величина этого тока не должна превышать номинального значения.

Внимание! Превышение величины тока номинального значения может привести к выходу из строя электродвигателя. В процессе наладки системы вентиляции необходимо постоянно контролировать ток, потребляемый электродвигателем, не допуская превышения номинального значения.

- Направление вращения, которое должно соответствовать стрелке на корпусе вентилятора. Для изменения направления вращения необходимо в модуле управления поменять местами два из трех провода, идущих к электродвигателю.
- Отсутствие сильного шума и вибрации.

При любых признаках неисправности необходимо отключить электродвигатель.

• После 10 минут работы отключить вводной автомат и проверить температуру двигателя, которая не должна превышать 40°С.

4. Наладка привода регулирующего вентиля.

 ${\rm B}$ вентиляционных системах применяются регулирующие вентили с трехпозиционным и аналоговым управлением с входным сигналом от 0 до 10 В постоянного тока. Некоторые из них имеют функцию автоматической калибровки начальной точки и хода штока. Благодаря этому облегчается настройка на различные типы вентилей.

Монтаж и настройку модуля «регулирующий вентиль – привод» проводят в строгом соответствии с прилагаемыми инструкциями.

Пример подключения привода «Gruner» 227C-024-05:

4.1. Положение при установке.

Вентиль должен быть установлен таким образом, чтобы приводной вал был ориентирован с отклонением от вертикали не более 90° , а двигатель располагался сверху. Над штоком вентиля должно быть достаточно свободного места, чтобы обеспечить установку привода.

- 4.2. Подключение к управляющему модулю.
 - 4.2.1. Назначение клемм привода:

BU — Нейтраль 24В.

ВМ — Питание 24В.

ВК — Сигнал управления 0...10В.

- 4.2.2. Включить режим «Зима».
- 4.2.3. Включить общий автомат управляющего модуля, и автомат питания контроллера (автомат защиты цепей автоматики).
- 4.2.4. Проверить наличие на соответствующих клеммах управляющего модуля уровней напряжений в пределах, указанных в п. 4.2.1.
- 4.2.5. Подключить к приводу питание;
- 4.3. Направление действия задается с помощью переключателя L-R на корпусе привода.

5. Установка датчиков температуры.

- 5.1. Канальный датчик температуры устанавливается в воздуховоде на расстоянии не менее трех диаметров от калорифера (или последнего модуля вентиляционной установки).
- 5.2. Датчик защиты от замерзания калорифера по воде устанавливается внутри приточной камеры на обратной водяной магистрали калорифера как можно ближе к калориферу. Окрашенная поверхность трубопровода перед установкой датчика зачищается напильником. На контактную поверхность датчика наносится слой термопроводной пасты. Датчик крепится при помощи хомута.
- 5.3. Капилляр термостата защиты от замерзания калорифера по воздуху должен быть распределен равномерно по калориферу на его задней, по отношению к потоку поверхности. Корпус термостата устанавливается на внешней стенке приточной установки. Порог срабатывания термостата устанавливается на 5°C. См. инструкцию по монтажу, прилагаемую к термостату.

6. Настройка уставки дифференциальных датчиков давления.

- 6.1. После включения вентиляционной системы с помощью U-образного манометра измеряются перепады давления на фильтре и на вентиляторе.
- 6.2. Подводящие трубки от отборов давления подключить к штуцерам датчиков в соответствии с маркировкой:
- Отбор давления до фильтра штуцер «+»;
- Отбор давления после фильтра штуцер «-»;
- Отбор давления до вентилятора штуцер «-»;
- Отбор давления после вентилятора штуцер «+».
 - 6.3. Для датчика давления на фильтре устанавливают уставку, большую измеренного значения на 30%.
 - 6.4. Для датчика давления на вентиляторе устанавливают уставку, меньшую измеренного значения на 50%.

7. Проверка отработки аварийных сигналов управляющим модулем.

- 7.1. Для имитации состояния замерзания калорифера по воде отключают один из двух проводов датчика. Система при этом переходит в режим «Авария», гаснет зеленая лампа «Работа», электродвигатель вентилятора останавливается, и воздушная заслонка полностью закрывается. После этого необходимо восстановить соединение датчика защиты от замерзания, нажать и 2-3 сек. удерживать кнопку «Еѕсаре». Аналогично имитируют срабатывание термостата защиты от замерзания по воздуху.
- 7.2. Для имитации состояния загрязнения фильтра примерно на 30-40 сек. замыкают контакты соответствующего датчика. При этом на контроллере загорается сигнал засорения фильтра.
- 7.3. Для имитации отсутствия напора вентилятора снимают примерно на 30 сек две трубки соответствующего датчика. Система при этом переходит в режим «Авария», гаснет зеленая лампа «Работа», электродвигатель вентилятора останавливается, и воздушная заслонка полностью закрывается. После этого необходимо восстановить соединение датчика защиты от замерзания, нажать и 2-3 сек. удерживать кнопку «Еscape».
- 7.4. Для имитации аварийного состояния двигателей вентилятора или насоса отключают соответствующий термозащитный автомат. Система при этом переходит в режим «Авария», гаснет зеленая лампа «Работа», электродвигатель вентилятора останавливается, воздушная заслонка полностью закрывается и регулирующий вентиль полностью открывается. После этого необходимо

- восстановить соединение датчика защиты от замерзания, нажать и 2-3 сек. удерживать кнопку «Escape».
- 7.5. Дополнительные проверки по имитации аварийных ситуаций зависят от конкретного исполнения управляющего модуля.

8. Заполнение гидравлической системы водой.

- 8.1. Исходное состояние системы:
 - Запорные вентили на подающем и обратном трубопроводах закрыты.
 - Дренажные вентили закрыты.
 - Запорные вентили до и после регулирующего вентиля закрыты.
 - Байпас регулирующего вентиля открыт.
- 8.2. По отсутствию течей в соединениях убедиться в герметичности гидравлической системы.
- 8.3. Для заполнения калорифера водой открыть запорный вентиль на обратном трубопроводе и удалить воздух из гидравлической системы.
- 8.4. Открыть запорный вентиль на подающем трубопроводе.
- 8.5. По показаниям манометров убедиться в наличии перепада давлений на калорифере, соответствующего гидравлической схеме проекта.
- 8.6. По показаниям термометров на подающем и обратном трубопроводах проверить наличие расхода теплоносителя через калорифер.
- 8.7. При отсутствии воздуха в системе показания термометров на подающем и обратном трубопроводах приблизительно равны.